28 research outputs found

    Exposure to animals and the risk of allergic asthma: a population-based cross-sectional study in Finnish and Russian children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little information on potential differences in animal exposure between Finland and Russia and particularly on the effects of animal exposure on asthma among Russian children. The aim of the study was to compare the pet and farm animal exposures and to assess the relations of pre- and postnatal animal exposures to the occurrence of allergic asthma in Finnish and Russian school children.</p> <p>Methods</p> <p>We conducted a population-based cross-sectional study in neighbour towns on either side of the Finnish-Russian border; Imatra in Finland and Svetogorsk in Russia. The study population consisted of 512 Finnish and 581 Russian school children aged 7–16 years (response rate 79%). Multivariate logistic regression analysis was used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) related to each exposure.</p> <p>Results</p> <p>Current indoor exposure to pets was more frequent among school children in Svetogorsk than in Imatra (67.5% vs. 56.0%, P < 0.001). Finnish children were exposed more frequently to dogs, whereas Russian children to cats during childhood and to farm animals during pregnancy and infancy. The risk of self-reported allergic asthma was inversely related to indoor dog keeping ever in Finland (adjusted OR 0.35, 95% CI 0.13, 0.95), whereas in Russia the risk of allergic asthma was increased in relation to combined indoor cat exposure during infancy and currently (4.56, 1.10, 18.91). The risk of asthma was elevated in relation to contact to farm animals during pregnancy (Finland: 1.95, 0.69, 5.50; Russia: 1.90, 0.70, 5.17) and early life (Finland: 2.05, 0.78, 5.40; Russia: 1.21, 0.39, 3.73).</p> <p>Conclusion</p> <p>Exposure to pets and farm animals during childhood differed significantly between Finland and Russia. Our study provides evidence that early-life exposure to cats increases the risk of asthma whereas exposure to dogs is protective. Our findings suggest that intermittent fetal and early-life exposure to farm animals increases the risk of allergic asthma in urban children visiting farms.</p

    Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China.

    No full text
    OBJECTIVE: To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. DESIGN: A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. PATIENTS: 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. RESULTS: The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. CONCLUSIONS: Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships

    Assessment of public health impact of work-related asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma is among the most common chronic diseases in working-aged populations and occupational exposures are important causal agents. Our aims were to evaluate the best methods to assess occurrence, public health impact, and burden to society related to occupational or work-related asthma and to achieve comparable estimates for different populations.</p> <p>Methods</p> <p>We addressed three central questions: <b>1: What is the best method to assess the occurrence of occupational asthma? </b>We evaluated: 1) assessment of the occurrence of occupational asthma <it>per se</it>, and 2) assessment of adult-onset asthma and the population attributable fractions due to specific occupational exposures. <b>2: What are the best methods to assess public health impact and burden to society related to occupational or work-related asthma? </b>We evaluated methods based on assessment of excess burden of disease due to specific occupational exposures. <b>3: How to achieve comparable estimates for different populations? </b>We evaluated comparability of estimates of occurrence and burden attributable to occupational asthma based on different methods.</p> <p>Results</p> <p>Assessment of the occurrence of occupational asthma <it>per se </it>can be used in countries with good coverage of the identification system for occupational asthma, i.e. countries with well-functioning occupational health services. Assessment based on adult-onset asthma and population attributable fractions due to specific occupational exposures is a good approach to estimate the occurrence of occupational asthma at the population level. For assessment of public health impact from work-related asthma we recommend assessing excess burden of disease due to specific occupational exposures, including excess incidence of asthma complemented by an assessment of disability from it. International comparability of estimates can be best achieved by methods based on population attributable fractions.</p> <p>Conclusions</p> <p>Public health impact assessment for occupational asthma is central in prevention and health policy planning and could be improved by purposeful development of methods for assessing health benefits from preventive actions. Registry-based methods are suitable for evaluating time-trends of occurrence at a given population but for international comparisons they face serious limitations. Assessment of excess burden of disease due to specific occupational exposure is a useful measure, when there is valid information on population exposure and attributable fractions.</p

    Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis

    Get PDF
    Background A substantial number of epidemiologic studies have provided estimates of the relation between exposure to benzene at work and the risk of leukemia, but the results have been heterogeneous. To bridge this gap in knowledge, we synthesized the existing epidemiologic evidence on the relation between occupational exposure to benzene and the risk of leukemia, including all types combined and the four main subgroups acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML). Methods A systematic literature review was carried out using two databases 'Medline' and 'Embase' from 1950 through to July 2009. We selected articles which provided information that can be used to estimate the relation between benzene exposure and cancer risk (effect size). Results In total 15 studies were identified in the search, providing 16 effect estimates for the main analysis. The summary effect size for any leukemia from the fixed-effects model was 1.40 (95% CI, 1.23-1.57), but the study-specific estimates were strongly heterogeneous (I2 = 56.5%, Q stat = 34.47, p = 0.003). The random-effects model yielded a summary- effect size estimate of 1.72 (95% CI, 1.37-2.17). Effect estimates from 9 studies were based on cumulative exposures. In these studies the risk of leukemia increased with a dose-response pattern with a summary-effect estimate of 1.64 (95% CI, 1.13-2.39) for low (< 40 ppm-years), 1.90 (95% CI, 1.26-2.89) for medium (40-99.9 ppm-years), and 2.62 (95% CI, 1.57-4.39) for high exposure category (> 100 ppm-years). In a meta-regression, the trend was statistically significant (P = 0.015). Use of cumulative exposure eliminated heterogeneity. The risk of AML also increased from low (1.94, 95% CI, 0.95-3.95), medium (2.32, 95% CI, 0.91-5.94) to high exposure category (3.20, 95% CI, 1.09-9.45), but the trend was not statistically significant. Conclusions Our study provides consistent evidence that exposure to benzene at work increases the risk of leukemia with a dose-response pattern. There was some evidence of an increased risk of AML and CLL. The meta-analysis indicated a lack of association between benzene exposure and the risk of CML

    Breastfeeding and childhood asthma: a six-year population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The question of the protective effect of breastfeeding on development of asthma has raised substantial interest, but the scientific evidence of the optimal duration of breastfeeding is controversial.</p> <p>Methods</p> <p>The authors elaborated the optimal duration of breastfeeding with respect to the risk of asthma primarily, and secondarily to the risk of persistent wheezing, cough and phlegm in school age in a population-based cohort study with the baseline in 1991 and follow-up in 1997. The study population comprised 1984 children aged 7 to 14 years at the end of the follow-up (follow-up rate 77). Information on breastfeeding was based on the baseline survey and information on the health outcomes at the follow-up.</p> <p>Results</p> <p>There was a U-shaped relation between breastfeeding and the outcomes with the lowest risk with breastfeeding from four to nine months for asthma and seven to nine months for persistent wheezing, cough and phlegm.</p> <p>Conclusion</p> <p>Our results suggest a U shape relation between duration of breastfeeding and risk of asthma with an optimal duration of 4 to 6 months. A true concave relation would explain the inconsistent results from the previous studies.</p

    Seasonality of mortality under climate change: a multicountry projection study.

    Get PDF
    BACKGROUND: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. METHODS: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. FINDINGS: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. INTERPRETATION: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates. FUNDING: The Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan

    Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysis

    Get PDF
    OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 μg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 μg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants

    Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countries.

    Get PDF
    BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development

    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study.

    Get PDF
    BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study.

    Get PDF
    BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council
    corecore